

GATE 2024: Online Test Series CHEMICAL ENGINEERING

Topicwise Tests								
Test No.	Test Syllabus	No. of Ques.	Marks	Time	Activation Date			
1	Heat Transfer-1: Equation of energy, steady and unsteady heat conduction, convection.	17	25	45 min				
2	Heat Transfer-2: Radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations; design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.	17	25	45 min				
3	Chemical Reaction Engineering-1: Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors.	17	25	45 min				
4	Chemical Reaction Engineering-2: Non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors.	17	25	45 min	Active			
5	Chemical Reaction Engineering-3: Kinetics of enzyme reactions (Michaelis-Menten and Monod models); kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis; rate and performance equations for catalyst deactivation.	17	25	45 min				
6	Fluid Mechanics-1: Fluid statics, surface tension, Newtonian and non-Newtonian fluids, transport properties, shell-balances including differential form of Bernoulli equation and energy balance, equation of continuity, equation of motion, equation of mechanical energy, Macroscopic friction factors, dimensional analysis and similitude.	17	25	45 min				
7	Fluid Mechanics-2: Flow through pipeline systems, velocity profiles, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.	17	25	45 min	Active			
8	Mechanical Operations-3: Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids.	17	25	45 min				
9	Engineering mathematics-1: Linear Algebra, Calculus, Numerical Methods .	17	25	45 min				
10	Engineering mathematics-2: Differential Equations, Complex Analysis, Probability and Statistics.	17	25	45 min				
11	General Aptitude (Part-1): Numerical Ability, Numerical computation, numerical estimation, and data interpretation.	17	25	45 min				
12	General Aptitude (Part-2): Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning, numerical reasoning, verbal deduction and spatial aptitude.	17	25	45 min				
13	Plant Design and Economics-1: Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period.	17	25	45 min				
14	Plant Design and Economics-2: Discounted cash flow, optimization in process design and sizing of chemical engineering equipments such as heat exchangers and multistage contactors.	17	25	45 min	Active			
15	Instrumentation and Process Control-1: Measurement of process variables; sensors and transducers; P & ID equipment symbols; process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response.	17	25	45 min				
16	Instrumentation and Process Control-2: Process reaction curve, controller modes (P, PI, and PID); control valves; transducer dynamics; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.	17	25	45 min				
17	Thermodynamics and Process Calculations-1: Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb's phase rule and degree of freedom analysis.	17	25	45 min				
18	Thermodynamics and Process Calculations-2: First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances.	17	25	45 min	1			
19	Thermodynamics and Process Calculations-3: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium.	17	25	45 min				
20	Chemical Technology-1: Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats).	17	25	45 min				
21	Chemical Technology-2: Petroleum refining and petrochemicals; polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).	17	25	45 min	Active			
22	Mass Transfer-1: Fick's laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies.	17	25	45 min				
23	Mass Transfer-2: Stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption.	17	25	45 min				
24	Mass Transfer-3: Leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption, membrane separations(micro-filtration, ultra-filtration, nano-filtration and reverse osmosis).	17	25	45 min				

	Single Subject Tests						
Test No.	Test Syllabus	No. of Ques.	Marks	Duration	Activation Date		
25	Thermodynamics	33	50	90 min	Active		
26	Heat Transfer	33	50	90 min			
27	Chemical Reaction Engineering	33	50	90 min			
28	Process Calculation and Mechanical Operation	33	50	90 min			
29	Engineering Mathematics	33	50	90 min			
30	General Aptitude	33	50	90 min			
31	Instrumentation and Process Control	33	50	90 min			
32	Fluid Mechanics	33	50	90 min			
33	Mass Transfer	33	50	90 min			
34	Instrument and Process Control	33	50	90 min	Active		
35	Plant Design and Economics	33	50	90 min			
36	Chemical Technology	33	50	90 min			
	Multiple Subject Tests						
37	Thermodynamics + Process Control	33	50	90 min	Active		
38	Chemical Reaction Engineering + Plant Design and Economics	33	50	90 min			
39	Mass Transfer + Chemical Technology	33	50	90 min			
40	Heat Transfer + Mechanical Operations	33	50	90 min			
41	Instrumentation Process Control + Fluid Mechanics	33	50	90 min			
42	Engineering Mathematics + General Aptitude	33	50	90 min			
	Full Syllabus Tests						
43	Full Syllabus Test-1 (Basic Level)	65	100	180 min			
44	Full Syllabus Test-2 (Basic Level)	65	100	180 min			
45	Full Syllabus Test-3 (Basic Level)	65	100	180 min	Active		
46	Full Syllabus Test-4 (Basic Level)	65	100	180 min			
47	Full Syllabus Test-5 (Advance Level)	65	100	180 min			
48	Full Syllabus Test-6 (Advance Level)	65	100	180 min	Activo		
49	Full Syllabus Test-7 (Advance Level)	65	100	180 min	Active		
50	Full Syllabus Test-8 (Advance Level)	65	100	180 min			
	Mock Tests						
51	GATE Mock Test 1	65	100	180 min			
52	GATE Mock Test 2	65	100	180 min	Active		
53	GATE Mock Test 3	65	100	180 min			
54	GATE Mock Test 4	65	100	180 min			